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We present recent progress on numerical methods 
for a family of linear hyperbolic balance laws 
with stiff diffusive relaxation that model particle 

transport in a material medium. In diffusive regimes, 
conventional hyperbolic solvers for these systems suffer from 
excessive numerical dissipation, numerical stiffness, or both. 
We have developed a regularization technique to address such 
issues at the continuum level.

In kinetic models of particle transport, diffusive relaxation 
is a common phenomenon that occurs when the mean free 
path between particle collisions with a material medium is 
small when compared with the macroscopic scales of interest. 
In such cases, particles undergo frequent collisions with 
the material so that, over long time scales, the predominant 
macroscopic behavior of the system is diffusive.

We are specifically interested in simulating the time-
dependent PN equations, a linear hyperbolic system of 
N+1 moment equations that is used to approximate kinetic 
transport in neutron and photon applications. Using 
operator-splitting techniques, we have formally derived a 
regularized version of the PN system for which the diffusive 
limit is explicitly built-in. Our method is a nontrivial 
extension of an approach used in [1]. It applies to a large 
family of balance laws, allows for large time steps, and 
handles spatial variations in the material medium, which 
affect the local collision rate. Moreover, the regularization 
does not suffer from oscillations that sometimes appear in 
other splitting methods [4].

The derivation of the regularized PN system proceeds 
in three steps: 1) separation of the equations into two 
subsystems, each containing either fast or slow dynamics; 

2) discretization of each subsystem in time, keeping spatial 
derivatives in continuum form; and 3) recombining the 
semidiscretized subsystems and taking specific limits to 
get back the continuum time derivative. The result is a 
hyperbolic-parabolic system with the following properties 
[2,3]:

•In diffusive regimes, standard numerical methods for 
the regularized equations capture the diffusion limit 
with a mesh spacing based on the macroscopic solution 
profile and not the mean free path. This is the so-called 
asymptotic preserving (or AP) property [1].

•In cases where the mean free path is not resolved by the 
spatial mesh, there is no hyperbolic Courant-Friedrichs-
Lewy (CFL) condition. Thus an implicit discretization 
of the diffusion operator allows for large time steps. 
Moreover, the diffusion operator is diagonal, so that 
implicit solvers are relatively easy to implement.

•In streaming regimes, where the mean free path is 
relatively large and collision rates are low, the regularized 
system behaves like the standard PN equations.

Computational results for 1D test problems confirm that 
the regularization gives accurate results in different regimes 
and that, in the diffusion regime, it does so at a fraction of 
the cost of upwind or discontinuous Galerkin solvers for the 
original PN system.
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Results from a sample simulation are given in Figs. 1 and 2, 
where the particle concentration based on a P3 calculation 
is plotted. An important parameter here is the cell optical 
depth, which gives the number of mean free paths in a 
computational cell. When this value is large, upwind schemes 
tend to be overly dissipative and numerically stiff. These 
results confirm the properties of the regularization outlined 
above.

For further information contact Cory Hauck at 
cdhauck@lanl.gov.
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Fig. 1. Snapshot in time of 
the particle concentration for 
P3 (red line) and regularized 
P3 (blue circles). The initial 
condition is a characteristic 
function with height two 
and support [0.8,1.2]. Both 
computations use upwind 
methods that are first order 
in time and second order in 
space, with 100 spatial cells 
and a CFL number of 0.1. The 
cell optical depth is 0.01.

Fig. 2. Repeat of Fig. 1, but 
with 50 spatial cells and a cell 
optical depth of 250. Based 
on the CFL restriction, the P3 
computation (red line) takes 
roughly 30,000 time steps, 
while the regularized version 
(blue circles) uses less than 10. 
The thick green line is a highly 
resolved numerical solution 
for the limiting diffusion 
equation.


